The mircrine mechanism controlling cardiac stem cell fate
نویسندگان
چکیده
منابع مشابه
The mircrine mechanism controlling cardiac stem cell fate
The recent identification of c-kit-positive cardiac stem cells revealed the great growth reserve of the heart, in which connection among cells might be essential in regulating their fate. Especially, the mircrine mechanism, translocation of microRNAs (miRs) from a cell to another via gap junctions, appeared to be important in controlling the differentiation of cardiac stem cells. The modificati...
متن کاملHuman cardiac stem cell differentiation is regulated by a mircrine mechanism.
BACKGROUND Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. METHODS AND RESULTS On the basis of results of in vitro and in vivo assays, we report that...
متن کاملHeart Failure Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism
Background—Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. Methods and Results—On the basis of results of in vitro and in vivo assays, we report that t...
متن کاملControlling stem cell fate with material design.
Advances in our understanding of stem cell interactions with their environment are leading to the development of new materials-based approaches to control stem cell behavior toward cellular culture and tissue regeneration applications. Materials can provide cues based on chemistry, mechanics, structure, and molecule delivery that control stem cell fate decisions and matrix formation. These appr...
متن کاملBioinspired materials for controlling stem cell fate.
Although researchers currently have limited ability to mimic the natural stem cell microenvironment, recent work at the interface of stem biology and biomaterials science has demonstrated that control over stem cell behavior with artificial microenvironments is quite advanced. Embryonic and adult stem cells are potentially useful platforms for tissue regeneration, cell-based therapeutics, and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2013
ISSN: 1664-8021
DOI: 10.3389/fgene.2013.00204